
Comtegra Workshop Nov 18

Gunter Roeth, SA EMEA

gunterr@nvidia.com

INTRODUCTION TO GPU
COMPUTING

mailto:gunterr@nvidia.com

2

NAVIGATING TO COURSES

1. Navigate to:
https://www.nvidia.com/en
-us/deep-learning-
ai/education/

2. Google search for
nvidia dli

3. Scroll down
Training Online ELECTIVES

Use NV Developer login or new
account.

https://www.nvidia.com/en-us/deep-learning-ai/education/

3

GPU CPU DIFFERENCES

4

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

Accelerated Computing CPU/GPU differences
10x Performance & 5x Energy Efficiency for HPC

5

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

Accelerated Computing
10x Performance & 5x Energy Efficiency for HPC

CPU Strengths

• Very large main memory

• Very fast clock speeds

• Latency optimized via large caches

• Small number of threads can run

very quickly

CPU Weaknesses

• Relatively low memory bandwidth

• Cache misses very costly

• Low performance/watt

6

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

Accelerated Computing
10x Performance & 5x Energy Efficiency for HPC

GPU Strengths

• High bandwidth main memory

• Significantly more compute

resources

• Latency tolerant via parallelism

• High throughput

• High performance/watt

GPU Weaknesses

• Relatively low memory capacity

• Low per-thread performance

7

Accelerator Nodes

PCIe

RAM RAM
CPU and GPU have distinct
memories

• CPU generally larger and slower

• GPU generally smaller and faster

CPU and GPU communicate via PCIe

• Data must be copied between
these memories over PCIe

• PCIe Bandwidth is much lower
than either memories

8

LOW LATENCY OR HIGH THROUGHPUT?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other thread warps

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor Computation Thread/Warp

Tn Processing

Waiting for data

Ready to be processed

Context switchW1

W2

W3

W4

T1 T2 T3 T4

Some Terminology

Kernel – A function which runs on the GPU

A kernel is launched on a grid of thread blocks.

The grid and block size are called the launch configuration.

Global Memory – GPU’s on-board DRAM

Shared Memory – On-chip fast memory local to a thread

block

SIMT Execution Model
Software Hardware

Threads are executed by CUDA Cores

Thread

CUDA

Core

Thread Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one

multiprocessor - limited by multiprocessor resources

(shared memory and register file)

Grid

A kernel is launched as a grid of thread blocks

Device

HELLO WORLD!

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

Hello World!

int main(void) {

printf("Hello World!\n");

return 0;

}

Standard C that runs on the host

NVIDIA compiler (nvcc) can be used to

compile programs with no device code

Output:

$ nvcc

hello_world.cu

$ a.out

Hello World!

$

Hello World! with Device Code

__global__ void mykernel(void) {

}

int main(void) {

mykernel<<<1,1>>>();

cudaDeviceSynchronize();

printf("Hello World!\n");

return 0;

}

▪ Two new syntactic elements…

Hello World! with Device Code

__global__ void mykernel(void) {

}

CUDA C/C++ keyword __global__ indicates a function that:

Runs on the device

Is called from host code

nvcc separates source code into host and device components

Device functions (e.g. mykernel()) processed by NVIDIA compiler

Host functions (e.g. main()) processed by standard host compiler

gcc, cl.exe

Hello World! with Device Code

mykernel<<<1,1>>>();

Triple angle brackets mark a call from host code to device code

Also called a “kernel launch”

We’ll return to the parameters (1,1) in a moment

That’s all that is required to execute a function on the GPU!

RUNNING IN PARALLEL

BLOCKS & THREADS

Heterogeneous Computing

Blocks

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

Threads

IDs and Dimensions

Built-in variables:
threadIdx.[x y z]

thread index within a thread block

blockIdx.[x y z]

block index within the grid.

blockDim.[x y z]

Number of threads in each block.

gridDim.[x y z]

Number of blocks in the grid.

Device

Grid

Block

(0,0,0)

Block

(1,0,0)

Block

(2,0,0)

Block

(1,1,0)

Block

(2,1,0)

Block

(0,1,0)

Block (1,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

Thread

(4,0,0)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(4,1,0)

Thread

(0,2,0)

Thread

(1,2,0)

Thread

(2,2,0)

Thread

(3,2,0)

Thread

(4,2,0)

Parallel Programming in CUDA C/C++

▪ But wait… GPU computing is about massive

parallelism!

▪ We need a more interesting example…

▪ We’ll start by adding two integers and build up

to vector addition

a b c

Vector Add: GPU’s Hello World

GPU is parallel computation oriented.

Vector add is a very simple parallel algorithm.

Problem: C = A + B

C, A, B are length N vectors

void vecAdd(int n, float * a,

float * b, float * c)

{

for(int i=0; i<n; i++)

{

c[i] = a[i] + b[i];

}

}

Vector Add: GPU’s Hello World

GPU is parallel computation oriented.

Vector add is a very simple parallel algorithm.

Problem: C = A + B

C, A, B are length N vectors

void main()

{

int N = 1024;

float * a, *b, *c;

a = (float*)malloc(N*sizeof(float));

b = (float*)malloc(N*sizeof(float));

c = (float*)malloc(N*sizeof(float));

memset(c, 0, N*sizeof(float));

init_rand_f(a, N);

init_rand_f(b, N);

vecAdd(N, a, b, c);

}

void vecAdd(int n, float * a,

float * b, float * c)

{

for(int i=0; i<n; i++)

{

c[i] = a[i] + b[i];

}

}

Moving Computation to the GPU

Step 1: Identify parallelism.
Design problem decomposition

Step 2: Write your GPU Kernel

Step 3: Setup the Problem

Step 4: Launch the Kernel

Step 5:Copy results back from GPU

Remember: big font means important

Parallelization of VecAdd

c[0]

b[0]

a[0]

0

b[1]

a[1]

c[1]

1

c[2]

b[2]

a[2]

2

b[255]

a[255]

c[255]

255

b[256]

a[256]

c[256]

256

b[511]

a[511]

c[511]

511

b[512]

a[512]

c[512]

512

b[767]

a[767]

c[767]

767

b[N]

a[N]

c[N]

N

inputs

outputs

Thread

Parallelization of VecAdd

c[0]

b[0]

a[0]

0

b[1]

a[1]

c[1]

1

c[2]

b[2]

a[2]

2

b[255]

a[255]

c[255]

255

b[256]

a[256]

c[256]

256

b[511]

a[511]

c[511]

511

b[512]

a[512]

c[512]

512

b[767]

a[767]

c[767]

767

b[N]

a[N]

c[N]

N

inputs

outputs

Thread

threadBlock 0 threadBlock 1

...

threadBlock 2

Parallelization of VecAdd

c[0]

b[0]

a[0]

0

b[1]

a[1]

c[1]

1

c[2]

b[2]

a[2]

2

b[255]

a[255]

c[255]

255

b[256]

a[256]

c[256]

256

b[511]

a[511]

c[511]

511

b[512]

a[512]

c[512]

512

b[767]

a[767]

c[767]

767

b[N]

a[N]

c[N]

N

inputs

outputs

Thread

threadBlock 0 threadBlock 1

...

threadBlock 2

work index i = threadIdx.x + blockIdx.x * blockDim.x;

index of the thread within

a thread block

index of the threadblock

within the grid
number of threads within

each block

Indexing Arrays with Blocks and Threads

No longer as simple as using blockIdx.x and threadIdx.x

Consider indexing an array with one element per thread (8

threads/block)

With blockDim.x threads per block, a unique index for each

thread is given by:

int index = blockIdx.x * blockDim.x + threadIdx.x

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

Vector Add: GPU’s Hello World

__global__ void vecAdd(int n, float * a, float * b, float * c)

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

if(i < n){

c[i] = a[i] + b[i];

}

}

Step 2: Make it a GPU Kernel

i is a different

value for each

thread.

Identify this function

as something to be run

on the GPU.

Protect against invalid

access if too many

threads are launched.

Step 3: Setup the problem

void main()

{

int N = 1024;

float *a, *b, *c;

float *devA, *devB, *devC;

a = (float*)malloc(N*sizeof(float));

b = (float*)malloc(N*sizeof(float));

c = (float*)malloc(N*sizeof(float));

cudaMalloc(&devA, N*sizeof(float));

cudaMalloc(&devB, N*sizeof(float));

cudaMalloc(&devC, N*sizeof(float));

memset(c, 0, N*sizeof(float));

init_rand_f(a, N);

init_rand_f(b, N);

cudaMemcpy(devA, a, N*sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(devB, b, N*sizeof(float), cudaMemcpyHostToDevice);

}

Pointers to storage on

the GPU.

Allocate memory in the

GPU Global Memory.

Copy data to the GPU.

Step 4: Launch the GPU Kernel

void main()

{

...

vecAdd<<<(N+127)/128, 128>>>(N, devA, devB, devC);

...

}

call function by name

as usual

Angle Brackets: Specify

launch configuration

for the kernel.

First argument is

the number of

thread blocks

(rounding up)

Second argument is

the shape of

(i,e, number of threads in)

each thread block

Normal parameter passing

syntax. Note that devA,

devB, and devC are

device pointers.

They point to memory

allocated on the GPU.

Step 5: Copy data back.

void main()

{

...

cudaMemcpy(c, devC, N*sizeof(float), cudaMemcpyDeviceToHost);

...

}

Handling Arbitrary Vector Sizes

Typical problems are not even multiples of blockDim.x

Avoid accessing beyond the end of the arrays:

Update the kernel launch:
add <<<(N + M-1) / M, M>>>(a, b, c, N);

N = problem size, M = block size

__global__ void add(int *a, int *b, int *c, int n) {

int index = blockIdx.x * blockDim.x + threadIdx.x;

if(index<n)

c[index] = a[index] + b[index];

}

Multi-Dimensional Thread-Blocks

CUDA supports up to 3-dimensional grids and blocks.
threadIdx.{x,y,z}

blockIdx.{x,y,z}

blockDim.{x,y,z}

gridDim.{x,y,z}

Easily accelerate multiple nested loops

Launch a 2D grid using dim3 structures
kernel<<<dim3(32,32),dim3(32,4)>>>()

for(int y=...) -> int y=blockIdx.y*blockDim.y+threadIdx.y;

for(int x=...) -> int x =blockIdx.x*blockDim.x+threadIdx.x;

Order of loops is important

for performance. Ideally

threadIdx.x is consecutive in

memory

performWork<<<2, 4>>>()

GPUs do work in parallel

GPU

performWork<<<2, 4>>>()

GPU work is done in a thread

GPU

performWork<<<2, 4>>>()

Many threads run in parallel

GPU

A collection of threads is a block

GPU

performWork<<<2, 4>>>()

There are many blocks

GPU

performWork<<<2, 4>>>()

A collection of blocks associated with a

given kernel launch is a grid

GPU

performWork<<<2, 4>>>()

Kernels are launched with an

execution configuration

GPU

performWork<<<2, 4>>>()

COOPERATING THREADS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

1D Stencil

Consider applying a 1D stencil to a 1D array of elements

Each output element is the sum of input elements within a radius

If radius is 3, then each output element is the sum of 7 input

elements:

radius radius

Implementing Within a Block

Each thread processes one output element

blockDim.x elements per block

Input elements are read several times

With radius 3, each input element is read seven times

Sharing Data Between Threads

Terminology: within a block, threads share data via shared memory

Extremely fast on-chip memory, user-managed

Declare using __shared__, allocated per block

Data is not visible to threads in other blocks

Implementing With Shared Memory

Cache data in shared memory

Read (blockDim.x + 2 * radius) input elements from global memory to

shared memory

Compute blockDim.x output elements

Write blockDim.x output elements to global memory

Each block needs a halo of radius elements at each boundary

blockDim.x output elements

halo on left halo on right

__syncthreads()

void __syncthreads();

Synchronizes all threads within a block

Used to prevent RAW / WAR / WAW hazards

All threads must reach the barrier

In conditional code, the condition must be uniform across the block

Stencil Kernel

__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + radius;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex – RADIUS] = in[gindex – RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

__syncthreads();

Stencil Kernel

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}

MANAGING THE DEVICE

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

Coordinating Host & Device

Kernel launches are asynchronous

Control returns to the CPU immediately

CPU needs to synchronize before consuming the results

cudaMemcpy() Blocks the CPU until the copy is complete

Copy begins when all preceding CUDA calls have completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have completed

Reporting Errors

All CUDA API calls return an error code (cudaError_t)

Error in the API call itself

OR

Error in an earlier asynchronous operation (e.g. kernel)

Get the error code for the last error:
cudaError_t cudaGetLastError(void)

Get a string to describe the error:
char *cudaGetErrorString(cudaError_t)

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

Device Management

Application can query and select GPUs
cudaGetDeviceCount(int *count)

cudaSetDevice(int device)

cudaGetDevice(int *device)

cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

Multiple threads can share a device

A single thread can manage multiple devices

cudaSetDevice(i) to select current device

cudaMemcpy(…) for peer-to-peer copies✝

✝ requires OS and device support

© NVIDIA Corporation 2009

EXECUTION CONFIGURATION

Blocks Size Guidelines

Block size cannot be larger than 1024 threads

Block size = blockDim.x * blockDim.y * blockDim.z

For performance

Block size should be divisible by 32

Have at least 128 threads per block

Tip:

start with 128 threads per block and tune up by increments of 32 if

necessary

GPU Kepler GK180 Maxwell GM200 Pascal GP100 Volta GV100

Compute Capability 3.5 5.2 6.0 7.0

Threads / Warp 32 32 32 32

Max Warps / SM 64 64 64 64

Max Threads / SM 2048 2048 2048 2048

Max Thread Blocks / SM 16 32 32 32

Max 32-bit Registers /

SM
65536 65536 65536 65536

Max Registers / Block 65536 32768 65536 65536

Max Registers / Thread 255 255 255 255*

Max Thread Block Size 1024 1024 1024 1024

FP32 Cores / SM 192 128 64 64

of Registers to FP32

Cores Ratio
341 512 1024 1024

Shared Memory Size /

SM
16 KB/32 KB/48 KB 96 KB 64 KB

Configurable up to 96

KB

Compute Capabilities and SM limits of comparable Kepler, Maxwell, Pascal and Volta GPUs. (*The per-thread program counter

(PC) that forms part of the improved SIMT model typically requires two of the register slots per thread.)

GV100 Compute Capability 7.0

© NVIDIA Corporation 2009

Occupancy Calculator

SMper threadsmaximum

blockper threadsSMper blocks
occupancy

=

Occupancy calculator shows trade-offs

between thread count, register use,

shared memory use

Low occupancy is bad

Increasing occupancy doesn’t always help

JUPYTER NOTEBOOK

2. Then click at the execute button

1. Place cursor / click anywhere inside code box

Key components are the grey boxes, that are executable cells. This is where you
will be able to modify codes or use a command line.

The executable boxes are those that have “IN []:” in front of the box.
The blank space between brackets means that it hasn’t been run yet, and to run
it you have to click in the box and press the play button (see below). Or you
may also hit Control + Enter.

JUPYTER NOTEBOOK

Once it is successfully running, you will see a number appear, such as the order
as they have been executed.

Questions?

