
Gunter Roeth, Senior Solution Architect

ACCELERATED COMPUTING: 
THE PATH FORWARD
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Agenda

9h30 -10h00 Introduction 

10h00 – 10h30 ONTAP

10h30 -12h00 GPU Programming Guide

12h00 12h10 Coffee Break

12h10 – 14h10 Hands-On 

14h10-14h40 Lunch

14h40 -15h40 Deep Learning SDK (cuDNN, TensorRT, DL Frameworks)

15h40- 15h50 Coffee Break 

15h50-17h50 Image Classification with DIGITS (Hands-On) 

17h50-18h00 Wrap up and Q&A
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NAVIGATING TO COURSES

1. Navigate to: 
www.nvidia.co.uk/dlilabs

2. Google search for        
nvidia dli

3. Scroll down 
Training Online ELECTIVES

Use NV Developer login or new 
account.

Accelerating Applications with 
CUDA C/C++

http://www.nvidia.co.uk/dlilabs
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INTRODUCTION
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NVIDIA

➢ Founded in 1993

➢ HQ in Santa Clara

➢ Jensen Huang, Founder & CEO

➢ 11,000 employees

➢ $9.7B in FY18
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GPU Computing Artificial IntelligenceComputer Graphics
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ACCELERATED VDIDATA ANALYTICS

AI / DEEP LEARNINGHIGH PERFORMANCE COMPUTE

ACCELERATED COMPUTING
Performance & Energy Efficiency
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NVIDIA SDK & LIBRARIES

INDUSTRY FRAMEWORKS 
& APPLICATIONS

CUSTOMER USECASES

SUPERCOMPUTING

+550 
Applications

CUDA

NCCL cuDNN TensorRTcuBLAS DeepStreamcuSPARSEcuFFT

Amber

NAMDLAMMPS

CHROMA

ENTERPRISE APPLICATIONSCONSUMER INTERNET

ManufacturingHealthcare EngineeringSpeech Translate Recommender Molecular 
Simulations

Weather
Forecasting

Seismic
Mapping

cuRAND

NVIDIA TESLA PLATFORM
World’s Leading Data Center Platform for Accelerating HPC and AI

TESLA GPUs & SYSTEMS

SYSTEM OEM CLOUDTESLA GPU NVIDIA HGXNVIDIA DGX FAMILY

https://aws.amazon.com/canada/
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CONTINUED DEMAND FOR COMPUTE POWER

Comprehensive 

Earth System 

Model

Coupled simulation 

of entire cells

Simulation of 

combustion for new 

high-efficiency, low-

emision engines.

Predictive 

calculations for 

supernovae

2016

Baidu Deep Speech 2
Superhuman Voice 

Recognition

2015

Microsoft ResNet
Superhuman Image 

Recognition

2017

Google Neural 
Machine Translation

Near Human 
Language Translation

100 ExaFLOPS
8700 Million Parameters

20 ExaFLOPS
300 Million Parameters

7 ExaFLOPS
60 Million Parameters

Neural Network complexity is ExplodingEver-increasing compute power 

Demand  in HPC
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NVIDIA POWERS WORLD'S FASTEST 
SUPERCOMPUTER

27,648
Volta Tensor Core GPUs

Summit Becomes First System To Scale The 100 Petaflops Milestone

122 PF 3 EF
HPC AI
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GPUS FOR HPC AND DEEP LEARNING

NVIDIA Tesla  V100

5120 energy efficient cores + TensorCores

7.8 TF Double Precision (fp64), 15.6 TF Single Precision (fp32) , 

125 Tensor TFLOP/s mixed-precision                 

Huge demand on communication and memory bandwidth 

NVLink

6 links per GPU a 50 GB/s bi-

directional for maximum 

scalability between GPU’s

CoWoS with HBM2

900 GB/s Memory Bandwidth 

Unifying Compute & Memory 

in Single Package

Huge demand on compute power (FLOPS)

NCCL

High-performance multi-GPU 

and multi-node collective 

communication primitives 

optimized for NVIDIA GPUs

GPU Direct /   
GPU Direct RDMA 

Direct communication 

between GPUs by 

eliminating the CPU from 

the critical path
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NEW VOLTA SM 
MICROARCHITECTURE
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21B transistors
815 mm2

80 SM
5120 CUDA Cores
640 Tensor Cores

16/32 GB HBM2
900 GB/s HBM2

300 GB/s NVLink

TESLA V100

*full GV100 chip contains 84 SMs
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VOLTA GV100 SM

GP100 GV100

FP32 units 64 64

FP64 units 32 32

INT32 units NA 64

Tensor Cores NA 8

Register File 256 KB 256 KB

Unified L1/Shared

memory

L1: 24KB 

Shared: 64KB  

128 KB

Active Threads 2048 2048

Redesigned for Productivity

Completely new ISA

Twice the schedulers

Simplified Issue Logic

Large, fast L1 cache

Improved SIMT model

Tensor acceleration
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VOLTA TENSOR CORE



25

TENSOR CORE
Mixed Precision Matrix Math - 4x4 matrices

New CUDA TensorOp instructions & data formats 

4x4x4 matrix processing array 

D[FP32] = A[FP16] * B[FP16] + C[FP32]

Using Tensor cores via

• Volta optimized frameworks and libraries 
(cuDNN, CuBLAS, TensorRT, ..)

• CUDA C++ Warp Level Matrix Operations
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cuBLAS GEMMS FOR DEEP LEARNING
V100 Tensor Cores + CUDA 9: over 9x Faster Matrix-Matrix Multiply

9.3x1.8x

Note: pre-production Tesla V100 and pre-release CUDA 9. CUDA 8 GA release.
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MEMORY
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UNIFIED MEMORY
Large datasets, simple programming, High Performance

Allocate Beyond 
GPU Memory Size

Enable Large 

Data Models

Oversubscribe GPU memory

Allocate up to system memory size

Tune 

Unified Memory

Performance 

Usage hints via cudaMemAdvise API

Explicit prefetching API

Simpler 

Data Access

CPU/GPU Data coherence

Unified memory atomic operations

Unified Memory

GPU CPU

CUDA 8 and beyond
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STATE OF UNIFIED MEMORY
High performance, low effort

Allocate Beyond 
GPU Memory Size

Unified Memory

GPU CPU

PGI OpenACC on Pascal P100

Geometric mean across all 15 
SPEC ACCEL™ benchmarks

86% PCI-E, 91% NVLink

Unified Memory

Explicit data 
movement

Automatic data movement for allocatables

86%

Performance vs no Unified Memory

PGI 17.1 Compilers OpenACC SPEC ACCEL™ 1.1 performance measured March, 2017. SPEC® and the benchmark 
name SPEC ACCEL™ are registered trademarks of the Standard Performance Evaluation Corporation. 
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VOLTA + UNIFIED MEMORY

VOLTA + NVLINK CPU

VOLTA + PCIE CPU
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NVLINK
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VOLTA NVLINK

• 6 NVLINKS @ 50 GB/s 
bidirectional 

• Reduce number of lanes 
for lightly loaded link 
(Power savings)

• Coherence features for 
NVLINK enabled CPUs

POWER9 based node

Hybrid cube mesh 
(eg. DGX1V)
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TESLA GPUS
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V100 WITH 16 OR 32GB HBM2
Maintain Form Factor Compatibility

Form Factor

Performance 
7.8T F DP, 15.7 TF SP, 125TF 

TensorCore

7.0 TF DP, 14.0 TF SP, 112 TF 

TensorCore

Memory Size 16 or 32GB HBM2 16 or 32GB HBM2

Memory Bandwidth 900GB/s 900GB/s

GPU Peer to Peer NVLink PCIe Gen3

Power 300W 250W

Available From All 

Major OEMs

SXM2 32GB P/N = 900-2G503-0010-000, PCIE 32GB P/N = 900-2G500-0010-000
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TESLA T4

2,560 CUDA  cores + 320 Tensor Cores

8.1 TFLOPS FP32 | 65 FP16 TFLOPS 

130 INT8 TOPS | 260 INT4 TOPS

16GB GDDR6 Memory |  320GB/s 

75 W Low Profile PCI-e

5.5

22

65
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260
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P100

(SXM2)

P100

(PCIE)
P40 P4 T4

V100 

(PCIE)

V100 

(SXM2)

V100

(FHHL)

GPU CHIP GP100 GP100 GP102 GP104 TU104 GV100 GV100 GV100

PEAK FP64 (TFLOPs) 5.3 4.7 NA NA NA 7 7.8 6.5

PEAK FP32 (TFLOPs) 10.6 9.3 12 5.5 8.1 14 15.7 13

PEAK FP16 (TFLOPs) 21.2 18.7 NA NA 65 112 125 105

PEAK TOPs NA NA 47 22 260 NA NA NA

Memory Size 16 GB HBM2
16/12 GB 

HBM2

24 GB 

GDDR5

8 GB 

GDDR5

16 GB 

HBM2

32 GB 

HBM2

32 GB 

HBM2
16GB HBM2

Memory BW 732 GB/s
732/549

GB/s
346 GB/s 192 GB/s 320GB/s 900 GB/s 900 GB/s 900 GB/s

Interconnect
NVLINK + 

PCIe Gen3
PCIe Gen3 PCIe Gen3 PCIe Gen3 PCIe Gen3 PCIe Gen3

NVLINK + 

PCIe Gen3
PCIe Gen3

ECC
Internal + 

HBM2

Internal + 

HBM2
GDDR5 GDDR5 GDDR6

Internal + 

HBM2

Internal + 

HBM2

Internal + 

HBM2

Form Factor SXM2
PCIE Dual 

Slot

PCIE Dual 

Slot
PCIE LP PCIE LP

PCIE Dual 

Slot
SXM2

PCIE Single 

Slot Full 

Height Half 

Length

Power 300 W 250 W 250 W 50-75 W 75 W 250W 300W 150W

TESLA PRODUCTS DECODER
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DGX-STATION / DGX-1 
DGX-2 / HGX-2
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NVIDIA DGX-STATION
AI supercomputer for the desk

4x Tesla V100 connected via NVLINK

(60 TFLOPS FP32, 0.5 PFLOPS Tensor 

performance) 

Xeon CPU, 256 GB Memory

Storage: 

3X 1.92 TB SSD RAID 0 (Data)

1X 1.92 TB SSD (OS)

Dual 10GbE

1500W, Water-cooled → Quiet

Optimized Deep Learning Software across the 

entire stack

Containerized frameworks

Always up-to-date via the cloud



55

NVIDIA DGX-1
AI supercomputer-appliance-in-a-box

8x Tesla V100  connected via NVLINK

(125 TFLOPS FP32, 1 PFLOPS Tensor Core 

performance) 

Dual Xeon CPU, 512 GB Memory

7 TB SSD Deep Learning Cache

Dual 10GbE, Quad IB 100Gb

3RU – 3200W

Optimized Deep Learning Software 

across the entire stack

Containerized frameworks

Always up-to-date via the cloud
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NVIDIA DGX-2

1

2 

3

5

4

6 Two Intel Xeon Platinum CPUs

7  1.5 TB System Memory

56

30 TB NVME SSDs 
Internal Storage

NVIDIA Tesla V100 32GB

Two GPU Boards
8 V100 32GB GPUs per board
6 NVSwitches per board
512GB Total HBM2 Memory
interconnected by
Plane Card

Twelve NVSwitches
2.4 TB/sec bi-section

bandwidth

Eight EDR Infiniband/100 GigE
1600 Gb/sec Total 
Bi-directional Bandwidth

PCIe Switch Complex

8

9

9Dual 10/25 Gb/sec
Ethernet



5757

• 18 NVLINK ports

• @50 GB/s per port bi-directional

• 900 GB/s total bi-directional

• Fully connected crossbar

• X4 PCIe Gen2 Management port

• GPIO

• I2C

• 2 billion transistors

NVSWITCH



58

FULL NON-BLOCKING BANDWIDTH
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FULL 6-WAY POINT-TO-POINT
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INDEPENDENT COMMUNICATION
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UNIFIED MEMORY PROVIDES

• Single memory view shared by all GPUs

• Automatic migration of data between GPUs

• User control of data locality

NVLINK PROVIDES

• All-to-all high-bandwidth peer mapping 

between GPUs

• Full inter-GPU memory interconnect 

(incl. Atomics)

NVSWITCH
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2X HIGHER PERFORMANCE WITH NVSWITCH

2 DGX-1V servers have dual socket Xeon E5 2698v4 Processor. 8 x V100 GPUs. Servers connected via 4X 100Gb IB ports | DGX-2 server has dual-socket Xeon Platinum 8168 Processor. 16 V100 GPUs

Physics
(MILC benchmark) 

4D Grid

Weather

(ECMWF benchmark) 

All-to-all

Recommender

(Sparse Embedding) 

Reduce & Broadcast

Language Model

(Transformer with MoE)

All-to-all

DGX-2 with NVSwitch2x DGX-1 (Volta)

2X FASTER 2.4X FASTER 2X FASTER 2.7X FASTER
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GPU PROGRAMMING
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HOW GPU ACCELERATION WORKS

Application Code

+

GPU CPU
5% of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code

Optimized for parallel, 
high throughput tasks

Optimized for 
sequential tasks
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HOW TO START WITH GPUS

Applications

Libraries

Easy to use

Most 

Performance

Programming 

Languages

Most 

Performance

Most 

Flexibility

CUDA

Easy to Start

Portable 

Code

Compiler

Directives

432

1

1. Review available GPU-
accelerated applications

2. Check for GPU-Accelerated 
applications and libraries

3. Add OpenACC Directives for 
quick acceleration results and 
portability

4. Dive into CUDA for highest 
performance and flexibility 
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VISION: MAINSTREAM PARALLEL 
PROGRAMMING

Enable more programmers to write portable parallel software in their language of 
choice

Embrace and evolve standards in key languages

CUDA continues to evolve as the target low-level platform for GPU acceleration

C
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550+ GPU-Accelerated Applications
www.nvidia.com/appscatalog
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DEEP LEARNING

GPU ACCELERATED LIBRARIES
“Drop-in” Acceleration for Your Applications

LINEAR ALGEBRA PARALLEL ALGORITHMS

SIGNAL, IMAGE & VIDEO

TensorRT

nvGRAPH NCCL

cuBLAS

cuSPARSE cuRAND

DeepStream SDK NVIDIA NPPcuFFT

CUDA

Math library

cuSOLVER

CODEC SDKcuDNN
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OPENACC
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WHAT IS OPENACC

main()
{
<serial code>
#pragma acc kernels
{  
<parallel code>

}
}

Add Simple Compiler Directive

Read more at  www.openacc.org/about

Powerful & Portable

Directives-based 

programming model for 

parallel 

computing

Designed for 

performance

portability on 

CPUs and GPUs

Simple

Programming model for an easy onramp to GPUs

OpenACC is an open specification developed by OpenACC.org consortium

http://www.openacc.org/about
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Single Source Low Learning CurveIncremental

OPENACC
Three major concepts
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Incremental

OPENACC

▪ Start with a working 
sequential code, and 
add parallelism

▪ Make small, 
incremental changes 
to the code

▪ If any errors occur, 
easily able to revert 
back to an earlier, 
working version of the 
code

for( i = 0; i < N; i++ )
{  

< loop code >
}

for( i = 0; i < N; i++ )
{  

< loop code >
}

Enhance Sequential Code

#pragma acc parallel loop
for( i = 0; i < N; i++ )
{  

< loop code >
}

#pragma acc parallel loop
for( i = 0; i < N; i++ )
{  

< loop code >
}

Begin with a working 
sequential code.

Parallelize it with OpenACC.

Rerun the code to verify 
correct behavior, 

remove/alter OpenACC 
code as needed.
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Single Source Low Learning CurveIncremental

OPENACC

▪ Make small, 
incremental changes 
to the code

▪ If any errors occur, 
easily able to revert 
back to an earlier, 
working version of the 
code

▪ Start with a working 
sequential code, and 
add improvements
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Single Source

OPENACC

▪ A single OpenACC code 
can be compiled for, 
and ran on, many 
different parallel 
hardware

▪ An OpenACC code 
retains its ability to 
run sequentially at all 
times

▪ No need for multiple 
versions of your code

POWER

Sunway

x86 CPU

x86 Xeon Phi

NVIDIA GPU

PEZY-SC

Supported Platforms

int main(){

...

for(int i = 0; i < N; i++)
< loop code >

}

int main(){

...

#pragma acc parallel loop
for(int i = 0; i < N; i++)

< loop code >

}

The compiler can be told to ignore
your OpenACC code additions. This 

allows you to run the code 
sequentially, regardless of the 

presence of OpenACC directives.
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CPU

OPENACC IS FOR MULTICORE, MANYCORE & GPUS

% pgfortran -ta=multicore –fast –Minfo=acc -c \
update_tile_halo_kernel.f90
. . . 
100, Loop is parallelizable

Generating Multicore code
100, !$acc loop gang

102, Loop is parallelizable

GPU

% pgfortran -ta=tesla,cc35,cc60 –fast -Minfo=acc –c \
update_tile_halo_kernel.f90
. . .
100, Loop is parallelizable
102, Loop is parallelizable

Accelerator kernel generated
Generating Tesla code
100, !$acc loop gang, vector(4) ! blockidx%y threadidx%y
102, !$acc loop gang, vector(32) ! blockidx%x threadidx%x

98 !$ACC KERNELS
99 !$ACC LOOP INDEPENDENT

100    DO k=y_min-depth,y_max+depth
101 !$ACC LOOP INDEPENDENT
102        DO j=1,depth
103          density0(x_min-j,k)=left_density0(left_xmax+1-j,k)
104        ENDDO
105      ENDDO
106 !$ACC END KERNELS
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SINGLE CODE FOR MULTIPLE PLATFORMS

OpenPOWER

Sunway

x86 CPU
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AMD GPU

PEZY-SC

OpenACC - Performance Portable Programming Model for HPC

Kepler Pascal
Volta V100

1x 2x 4x

AWE Hydrodynamics CloverLeaf mini-App, bm32 data set

Systems: Haswell: 2x16 core Haswell server, four K80s, CentOS 7.2 (perf-hsw10), Broadwell: 2x20 core Broadwell server, eight P100s (dgx1-prd-01), Broadwell server, eight V100s (dgx07), Skylake 2x20 core 

Xeon Gold server (sky-4).

Compilers: Intel 2018.0.128, PGI 18.1

Benchmark: CloverLeaf v1.3 downloaded from http://uk-mac.github.io/CloverLeaf the week of November 7 2016; CloverlLeaf_Serial; CloverLeaf_ref (MPI+OpenMP); CloverLeaf_OpenACC (MPI+OpenACC)

Data compiled by PGI February 2018.
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87

Single Source Low Learning CurveIncremental

OPENACC

▪ Make small, 
incremental changes 
to the code

▪ If any errors occur, 
easily able to revert 
back to an earlier, 
working version of the 
code

▪ Start with a working 
sequential code, and 
add improvements

▪ A single OpenACC code 
can be compiled for, 
and ran on, many 
different parallel 
hardware

▪ An OpenACC code 
retains its ability to 
run sequentially at all 
times

▪ No need for multiple 
versions of your code
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Low Learning Curve

OPENACC

▪ OpenACC is meant to 
be easy to use, and 
easy to learn

▪ Supports C, C++, and 
Fortran coding

▪ Takes a very high-level 
approach to 
parallelism, and 
allows the compiler to 
do a lot of extra work 
in parallelizing the 
code

int main(){

<sequential code>

#pragma acc kernels
{
<parallel code>
}

}

Compiler
Hint

CPU
Parallel Hardware

The programmer will 
give hints to the 

compiler about which 
parts of the code to 

parallelize.

The compiler will then 
generate parallelism 
for the target parallel 

hardware.
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Single SourceIncremental

OPENACC

▪ Make small, 
incremental changes 
to the code

▪ If any errors occur, 
easily able to revert 
back to an earlier, 
working version of the 
code

▪ Start with a working 
sequential code, and 
add improvements

▪ A single OpenACC code 
can be compiled for, 
and ran on, many 
different parallel 
hardware

▪ An OpenACC code 
retains its ability to 
run sequentially at all 
times

▪ No need for multiple 
versions of your code

Low Learning Curve

▪ OpenACC is meant to 
be easy to use, and 
easy to learn

▪ Supports C, C++, and 
Fortran coding

▪ Takes a very high-level 
approach to 
parallelism, and 
allows the compiler to 
do a lot of extra work 
in parallelizing the 
code
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Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC.ORG RESOURCES
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools 
https://www.openacc.org/tools

OpenACC

Now in GCC

https://www.openacc.org/community#slack

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.openacc.org/community#slack
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PGI — THE NVIDIA HPC SDK

Fortran, C & C++ Compilers

Optimizing, SIMD Vectorizing, OpenMP

Accelerated Computing Features

OpenACC Directives, CUDA Fortran

Multi-Platform Solution

X86-64 and OpenPOWER Multicore CPUs

NVIDIA Tesla GPUs

Supported on Linux, macOS, Windows

MPI/OpenMP/OpenACC Tools

Debugger

Performance Profiler

Interoperable with DDT, TotalView
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CUDA
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CUDA RELEASES

Four CUDA releases per year

Faster release cadence for new features and improved 
stability for existing users

Upcoming limited decoupling of display driver and CUDA 
release for ease of deployment

Monthly cuDNN & other library updates

Rapid innovation in library performance and 
functionality

Library Meta Packages independent of toolkit for easy 
deployment

Accelerating the Pace
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INTRODUCING CUDA 10.0

New GPU Architecture, Tensor Cores, NVSwitch Fabric

TURING AND NEW SYSTEMS
CUDA Graphs, Vulkan & DX12 Interop, Warp Matrix

CUDA PLATFORM

GPU-accelerated hybrid JPEG decoding,
Symmetric Eigenvalue Solvers, FFT Scaling

LIBRARIES
New Nsight Products – Nsight Systems and Nsight Compute

DEVELOPER TOOLS

Scientific Computing
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CUDA LIBRARIES
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https://developer.nvidia.com/cufft

cuFFT 10.0
Multi-GPU Scaling across DGX-2 and HGX-2

Up to 17TF performance on 16-GPUs

3D 1K FFT

 Strong scaling across 16-GPU systems –
DGX-2 and HGX-2

 Multi-GPU R2C and C2R support

 Large FFT models across 16-GPUs –
effective 512GB vs 32GB capacity
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https://developer.nvidia.com/cusparse

cuSOLVER 10.0
Dense Linear Algebra

Up to 44x Faster on Symmetric Eigensolver

(DSYEVD) 

Improved performance with new 
implementations for

 Cholesky factorization

 Symmetric & Generalized Symmetric 
Eigensolver

 QR factorization

Benchmarks use 2 x Intel Gold 6140  (Skylake) processors with Intel MKL 2018 and 

NVIDIA Tesla V100 (Volta) GPUs
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CUTLASS

Template library for linear algebra 
operations in CUDA C++

>90% CUBLAS performance

Open Source (3-clause BSD License) 
https://github.com/NVIDIA/cutlass

https://github.com/NVIDIA/cutlass
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NSIGHT
DEVELOPER TOOLS
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NSIGHT PRODUCT FAMILY

Nsight Systems

System-wide application 

algorithm tuning

Nsight Compute

CUDA Kernel Profiling and 

Debugging

Nsight Graphics

Graphics Shader Profiling and 

Debugging

IDE Plugins
Nsight Eclipse 

Edition/Visual Studio 
(Editor, Debugger)
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HIERARCHICAL MEMORY STATISTICS
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NAVIGATING TO COURSES

1. Navigate to: 
www.nvidia.co.uk/dlilabs

2. Google search for        
nvidia dli

3. Scroll down 
Training Online ELECTIVES

Use NV Developer login or new 
account.

Accelerating Applications with 
CUDA C/C++

http://www.nvidia.co.uk/dlilabs
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DEEP LEARNING SDK



Fundamentals

Accelerated Computing

Game Development & 
Digital Content

Finance

NVIDIA DEEP LEARNING 
INSTITUTE

Online self-paced labs and instructor-led 
workshops on deep learning and 
accelerated computing

Take self-paced labs at 
www.nvidia.co.uk/dlilabs

View upcoming workshops and request a 
workshop onsite at www.nvidia.co.uk/dli

Educators can join the University 
Ambassador Program to teach DLI courses 
on campus and access resources. Learn 
more at www.nvidia.com/dli

Intelligent Video 
Analytics

Healthcare

Robotics

Autonomous Vehicles

Virtual Reality
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65x in 3 Years

K40

K80 + 
cuDNN

1

M40 + 
cuDNN4

P100 + 
cuDNN5

0x

10x

20x

30x

40x

50x

60x

70x

2013 2014 2015 2016

AlexNet Training Performance

WHY THE EXCITEMENT?
GPUs as Enablers of Breakthrough Results

Paper: H.Zhang et al. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks, arXiv:1612.03242

We can generate photorealistic images 
from textual descriptions and super-

enhance blurry photos!

Achieve super-human 
accuracy in classification

And we are getting 
faster fast
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WHAT IS DEEP LEARNING?
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A NEW COMPUTING MODEL

Algorithms that Learn from Examples

Expert Written 

Computer 

Program

Traditional CV Approach

➢ Domain experts design feature 
detectors

➢ Time consuming
➢ Quality depends on Algorithms
➢ Error prone
➢ Not scalable to new problems
➢ Need CV experts and time

Deep Neural Network

Deep Learning Approach

➢ DNN learn from data
➢ Quality depends on data &

training method
➢ Easily to extend
➢ Needs lots of data and 

compute
➢ Speedup with GPUs
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GPUS IN ARTIFICIAL INTELLIGENCE

Replace hand-tuned parameters of the feature extraction 
steps (e.g. in voice and image recognition)

Deep learning is a subset of machine learning that refers to 
artificial neural networks that are composed of many 
layers.

Artificial Neural Networks inspired by human brain and 
need lots of training data (ideal for Big Data).

NVIDIA GPUs and cuDNN software broadly adopted for 
machine learning.

Machine Learning

Neural 

Networks

Deep 

Learning
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THE BIG BANG IN MACHINE LEARNING

“ Google’s AI engine also reflects how the world of computer hardware is changing. (It) 
depends on machines equipped with GPUs… And it depends on these chips more 
than the larger tech universe realizes.”

DNN GPUBIG DATA
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DEEP LEARNING EVERYWHERE

INTERNET & CLOUD

Image Classification
Speech Recognition

Language Translation
Language Processing
Sentiment Analysis
Recommendation

MEDIA & ENTERTAINMENT

Video Captioning
Video Search

Real Time Translation

AUTONOMOUS MACHINES

Pedestrian Detection
Lane Tracking

Recognize Traffic Sign

SECURITY & DEFENSE

Face Detection
Video Surveillance
Satellite Imagery

MEDICINE & BIOLOGY

Cancer Cell Detection
Diabetic Grading
Drug Discovery
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ARTIFICIAL NEURONS

From Stanford cs231n lecture notes 

Biological neuron

w1 w2 w3

x1 x2 x3

y

y=F(w1x1+w2x2+w3x3)

Artificial neuron

Weights (Wn) 
= parameters
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Tree

Cat

Dog

Machine Learning Software

“turtle”

Forward Propagation

Compute weight update to nudge

from “turtle” towards “dog”

Backward Propagation

Trained Model

“cat”

Repeat

Training

Inference
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TRAINING NEURAL NETWORKS
Find a set of weights that minimizes the misfit.

Error between the target and computed output

M 𝑾 = σ𝑖=1
𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠σ𝑗=1

𝑂𝑢𝑡𝑝𝑢𝑡
𝑂𝑐𝑜𝑚𝑝 𝑖,𝑗 − 𝑂𝑡𝑎𝑟𝑔𝑒𝑡 𝑖,𝑗

2

Least squares optimization problem

Solution by gradient descent, Monte Carlo, etc.

The gradient can be computed by the 
backpropagation of the error (delta rule)

𝛿𝑖,𝑗 = 𝑔′ 𝐼𝑖,𝑗 𝑂𝑐𝑜𝑚𝑝 𝑖,𝑗 − 𝑂𝑡𝑎𝑟𝑔𝑒𝑡 𝑖,𝑗

I1 I2 I3 I4

H1,1 H1,2 H1,3

Ocom

1

Ocom

2

Otar

1

Otar

2
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DEEP LEARNING APPROACH - TRAINING

Input

Process
• Forward propagation 

yields an inferred label 
for each training image

• Loss function used to 
calculate difference 
between known label 
and predicted label for 
each image

• Weights are adjusted 
during backward 
propagation

• Repeat the process

Forward propagation

Backward propagation
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Convolutional Networks Used Case

Yann LeCun et al, 1998

Local receptive field + weight sharing

“Gradient-Based Learning Applied to Document Recognition”, Proceedings of the IEEE 1998, http://yann.lecun.com/exdb/lenet/index.html

MNIST: 0.7% error rate

http://yann.lecun.com/exdb/lenet/index.html
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CONVOLUTION
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ADDITIONAL TERMINOLOGY
• Hyperparameters – parameters specified before training begins

• Can influence the speed in which learning takes place
• Can impact the accuracy of the model
• Examples:  Learning rate, decay rate, batch size

• Epoch – complete pass through the training dataset

• Activation functions – identifies active neurons
• Examples:  Sigmoid, Tanh, ReLU

• Pooling – Down-sampling technique
• No parameters (weights) in pooling layer
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DEEP NEURAL NETWORK (DNN)

Input Result

Application components:

Task objective
e.g. Identify face

Training data
10-100M images

Network architecture
~10s-100s of layers
1B parameters

Learning algorithm
~30 Exaflops
1-30 GPU days

Raw data Low-level features Mid-level features High-level features
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NVIDIA’S DIGITS
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NVIDIA’S DIGITS
Interactive Deep Learning GPU Training System

• Simplifies common deep learning tasks such as: 

• Managing data

• Designing and training neural networks on multi-GPU systems

• Monitoring performance in real time with advanced visualizations 

• Completely interactive so data scientists can focus on designing and training 
networks rather than programming and debugging

• Open source
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DIGITS - HOME

Clicking 
DIGITS 
will 
bring 
you to 
this 
Home 
screen

Clicking here will present 
different options for model 
and dataset creation

Click here to see a list of 
existing datasets or models
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DIGITS - DATASET

Different options will be presented based upon the task
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DIGITS - MODEL

Differences may exist between model tasks

Can 
anneal 
the 
learning 
rate

Define 
custom 
layers 
with 
Python
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Loss function
(Validation)

Loss function
(Training)

Accuracy
obtained from 

validation dataset

EVALUATE THE MODEL
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HANDWRITTEN DIGIT RECOGNITION

• MNIST data set of handwritten 
digits from Yann Lecun’s website

• All images are 28x28 grayscale

• Pixel values from 0 to 255

• 60K training examples / 10K test 
examples

• Input vector of size 784

• 28 * 28 = 784

• Output value is integer from 0-9

HELLO WORLD of machine learning?
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ADDITIONAL TECHNIQUES TO IMPROVE MODEL

• More training data

• Data augmentation

• Modify the network
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ADDITIONAL TERMINOLOGY
• Hyperparameters – parameters specified before training begins

• Can influence the speed in which learning takes place
• Can impact the accuracy of the model
• Examples:  Learning rate, decay rate, batch size

• Epoch – complete pass through the training dataset

• Activation functions – identifies active neurons
• Examples:  Sigmoid, Tanh, ReLU

• Pooling – Down-sampling technique
• No parameters (weights) in pooling layer
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FIRST RESULTS
Small dataset ( 10 epochs )

• 96% of accuracy 
achieved

• Training is done 
within one minute

SMALL DATASET

1 : 99.90 %

2 : 69.03 %

8 : 71.37 %

8 : 85.07 %

0 : 99.00 %

8 : 99.69 %

8 : 54.75 %
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SMALL DATASET FULL DATASET

1 : 99.90 % 0 : 93.11 %

2 : 69.03 % 2 : 87.23 %

8 : 71.37 % 8 : 71.60 %

8 : 85.07 % 8 : 79.72 %

0 : 99.00 % 0 : 95.82 %

8 : 99.69 % 8 : 100.0 %

8 : 54.75 % 2 : 70.57 %

SECOND RESULTS
Full dataset ( 10 epochs )

• 99% of accuracy 
achieved

• No improvements in 
recognizing real-
world images
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DATA AUGMENTATION
Adding Inverted Images

• Pixel(Inverted) = 255 – Pixel(original)

• White letter with black background

• Black letter with white background

• Training Images:
/home/ubuntu/data/train_invert

• Test Image:
/home/ubuntu/data/test_invert

• Dataset Name: MNIST invert
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SMALL DATASET FULL DATASET +INVERTED

1 : 99.90 % 0 : 93.11 % 1 : 90.84 %

2 : 69.03 % 2 : 87.23 % 2 : 89.44 %

8 : 71.37 % 8 : 71.60 % 3 : 100.0 %

8 : 85.07 % 8 : 79.72 % 4 : 100.0 %

0 : 99.00 % 0 : 95.82 % 7 : 82.84 %

8 : 99.69 % 8 : 100.0 % 8 : 100.0 %

8 : 54.75 % 2 : 70.57 % 2 : 96.27 %

DATA AUGMENTATION
Adding inverted images ( 10 epochs )
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MODIFY THE NETWORK
Adding filters and ReLU layer

layer {  
name: "pool1“
type: "Pooling“
…

}

layer {
name: "reluP1"
type: "ReLU"
bottom: "pool1"
top: "pool1"

}

layer {
name: "reluP1“

layer {
name: "conv1"
type: "Convolution"

...
convolution_param {
num_output: 75
...

layer {
name: "conv2"
type: "Convolution"
...
convolution_param {
num_output: 100
...
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MODIFY THE NETWORK
Adding ReLU Layer
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SMALL DATASET FULL DATASET +INVERTED ADDING LAYER

1 : 99.90 % 0 : 93.11 % 1 : 90.84 % 1 : 59.18 %

2 : 69.03 % 2 : 87.23 % 2 : 89.44 % 2 : 93.39 %

8 : 71.37 % 8 : 71.60 % 3 : 100.0 % 3 : 100.0 %

8 : 85.07 % 8 : 79.72 % 4 : 100.0 % 4 : 100.0 %

0 : 99.00 % 0 : 95.82 % 7 : 82.84 % 2 : 62.52 %

8 : 99.69 % 8 : 100.0 % 8 : 100.0 % 8 : 100.0 %

8 : 54.75 % 2 : 70.57 % 2 : 96.27 % 8 : 70.83 %

MODIFIED NETWORK
Adding filters and ReLU layer ( 10 epochs )
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DEEP LEARNING SDK
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NVIDIA DEEP LEARNING SOFTWARE PLATFORM

NVIDIA DEEP LEARNING SDK

TRAINING DEPLOY WITH TENSORRT

TRAINED 
NETWORK

TRAINING
DATA TRAINING

DATA MANAGEMENT

MODEL ASSESSMENT

EMBEDDED

Jetson TX

AUTOMOTIVE

Drive PX (XAVIER)

DATA CENTER

Tesla (Pascal, Volta)

GATHER AND LABEL

Rapidly label data, 
guide training get 

insights

Gather Data

Curate data sets

CNN
RNN
FC
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PERSONALIZATION

2 Trillion
Messages Per Day On 

LinkedIn

AI INFERENCING IS EXPLODING

SPEECH TRANSLATION VIDEO

60 Billion
Video frames/day uploaded on 

Youtube

140 Billion
Words Per Day Translated by 

Google

500M
Daily active users of

iFlyTek
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NVIDIA TensorRT
Deep Learning Inference Optimizer and Runtime

developer.nvidia.com/tensorrt

High performance neural network inference 
optimizer and runtime engine for 
production deployment 

Maximize inference throughput for latency-critical 
services in hyperscale datacenters, embedded, and 
automotive production environments

Optimize TensorFlow and ONNX-framework models to 
generate high-performance runtime engines

Deploy faster, more responsive and memory efficient 
deep learning applications with INT8 and FP16 
optimized precision support

DRIVE PX 2

JETSON TX2

NVIDIA DLA

TESLA P4

TESLA V100

FRAMEWORKS GPU PLATFORMS

TensorRT

Optimizer Runtime

Kernel 

Auto-Tuning

Layer & 

Tensor Fusion

Dynamic 

Tensor

Memory

Precision 

Calibration

developer.nvidia.com/tensorrt
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NVIDIA TENSORRT 4

Maximize RNN and 
MLP Throughput

RNN and MLP Layers  ⚫ ONNX Import  ⚫ NVIDIA DRIVE Support

Free download to members of NVIDIA Developer Program

developer.nvidia.com/tensorrt

Optimize and Deploy 
ONNX Models

Easily import and accelerate 
inference for ONNX frameworks 
(PyTorch, Caffe 2, CNTK, MxNet 
and Chainer)

Speed up speech, audio and 
recommender app inference 
performance through new layers 
and optimizations

0X

10X

20X

30X

40X

50X

CPU TensorRT

Recommendation Engine

45X Speedup

Deploy optimized deep learning 
inference models NVIDIA DRIVE 
Xavier

Support for NVIDIA 
DRIVE Xavier
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DL FRAMEWORKS
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NVIDIA Optimized Examples

Over 32 examples with 19 new for Volta Tensor Cores 

ResNet-50, Inception V3, Inception V4, 
GoogleNet, AlexNet

*Seq2seq (OpenNMT), *BigLSTM, DeepSpech2

TensorFlow: FP32 & FP16
ResNet-50, Inception V3, Inception V4, 
AlexNet

*Seq2seq, *word-rnn

MXNet: FP32 & FP16

ResNet-50, Inception V3, Inception V4, 
AlexNet

*Seq2seq (OpenNMT), *char-rnn

Caffe2: FP32 & FP16
ResNet-50 and AlexNet

word-level

PyTorch: FP32 & FP16

*Only FP32
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CONTAINER
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CHALLENGES

Current DIY deep learning 
environments are complex and 
time consuming to build, test 
and maintain

Development of frameworks by 
the community is moving very 
quickly

Requires high level of expertise 
to manage driver, library, 
framework dependencies 

NVIDIA Libraries

NVIDIA Docker

NVIDIA Driver

NVIDIA GPU

Open Source 

Frameworks



226

SIMPLIFY PORTABILITY 
WITH NVIDIA CONTAINERS

Benefits of Containers:    

Simplify deployment of 
GPU-accelerated applications 

Isolate individual frameworks 
or applications

Share, collaborate, 
and test applications across 
different environments 

226
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NVIDIA GPU CLOUD REGISTRY

Deep Learning
All major frameworks with multi-GPU optimizations Uses 
NCCL for NVLINK data exchange Multi-threaded I/O to 
feed the GPUs

Caffe, Caffe2,CNTK, mxnet, PyTorch, Tensorflow, 
Theano, Torch

HPC
NAMD, Gromacs, LAMMPS, GAMESS, Relion, Chroma, MILC

HPC Visualization
Paraview with Optix, Index and Holodeck with OpenGL 
visualization base on NVIDIA Docker 2.0, IndeX, VMD

Single NGC Account
For use on GPUs everywhere - https://ngc.nvidia.com

Common Software stack across NVIDIA GPUs

NVIDIA GPU Cloud containerizes GPU-

optimized frameworks, applications, runtimes, 

libraries, and operating system, available at no 

charge 

https://ngc.nvidia.com/
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KUBERNETES on NVIDIA GPUs

• Scale-up Thousands of GPUs Instantly

• Self-healing Cluster Orchestration

• GPU Optimized Out-of-the-Box

• Powered by NVIDIA Container Runtime

• Included with Enterprise Support on DGX

236

Container Orchestration for 
DL Training & Inference

NVIDIA GPUs

AWS-EC2    |    GCP    |    Azure    |    DGX

NVIDIA CONTAINER 

RUNTIME

KUBERNETES

NVIDIA GPU CLOUD
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CONVERGENCE OF 
HPC AND AI



238

INTELLIGENT HPC
DL Driving Future HPC Breakthroughs

Pre-

processing
Simulation

Post-

processing

• Trained networks as solvers
• Super-resolution of coarse simulations
• Low- and mixed-precision
• Simulation for training, network in production

• Select/classify/augment/
distribute input data

• Control job parameters

• Analyze/reduce/augment 
output data

• Act on output data

From 
calendar 

time to real 
time?
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AI Supercomputing is The New computing model

DATA SCIENCECOMPUTATIONAL SCIENCE COMPUTATIONAL & DATA SCIENCE

Turbulent Flow Molecular Dynamics

Structural Analysis N-body Simulation “Next move?”

“Is there cancer?”“What’s happening?”

“What does she mean?” Understanding Universe

Clean EnergyDrug Discovery

Monitoring Climate 
Change

Extending The Reach of HPC By Combining Computational & Data Science

S8242 – DL for Computational Science, Jeff Adie & Yang Juntao

Presented ~20 Success Stories of DL in Computational Science 
(GTC on-demand: http://on-demand-gtc.gputechconf.com)



55

AI Quantum Breakthrough

Background
Developing a new drug costs $2.5B and takes 10-15 years. Quantum chemistry 

(QC) simulations are important to accurately screen millions of potential drugs to 

a few most promising drug candidates.

Challenge
QC simulation is computationally expensive so researchers use approximations,

compromising on accuracy. To screen 10M drug candidates, it takes 5 years to

compute on CPUs.

Solution
Researchers at the University of Florida and the University of North Carolina 

leveraged GPU deep learning to develop ANAKIN-ME, to reproduce molecular 

energy surfaces with super speed (microseconds versus several minutes), 

extremely high (DFT) accuracy, and at 1-10/millionths of the cost of current 

computational methods.

Essentially the DL model is trained to learn Hamiltonian of the Schrodinger 

equation.

Impact
Faster, more accurate screening at far lower cost
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DEEP LEARNING FOR GRAVITATIONAL WAVE 
DETECTION

Deep learning method named 
deep filtering was used in the first 
detection of gravitational wave. 
Numerical simulated data was 
used for training deep filtering, a 
convolutional neural network to 
replace matched filtering. It 
provided 20X speed up on single 
core and potential to be 
accelerated further with GPU. 

Deep Learning for Computational Physics

Gravitational wave due to 
black hole collide and merge

LIGO facility

To be observed

Actual Signal Caused by 
Gravitational Wave Actual observed data

How to find
The signal???

Deep Learning
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N
V
ID

IA FEA UPDATED WITH NEURAL NETWORK

FEA trained deep neural network for surrogate modelling of estimated stress distribution. 
Deepvirtuality, a spinoff from Volkswagen Data:Lab under Nvidia Inception Program has 
demonstrate with their software aimed for a quicker prediction of structural data.  

Deep Learning for Solid Mechanics

An demonstration of Structure Born Noise of a V12 Engine with Deepvirtuality Torsional Frequencies of a Car Body by Deepvirtuallity
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HOROVOD

https://github.com/uber/horovod, https://eng.uber.com/horovod/

“Horovod is a distributed training framework for TensorFlow. The goal of 
Horovod is to make distributed Deep Learning fast and easy to use.”

Leverage Tensorflow + MPI + NCCL2 for a simplified and performant API to 
enable synchronous multigpu + multinode Tensorflow.

Instead of Parameter Server architecture leverage MPI.

Support features such as RDMA, GPUDirectRDMA (GDR), via leveraging MPI and 
NCCL2.

https://github.com/uber/horovod
https://eng.uber.com/horovod/
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NAVIGATING TO COURSES

1. Navigate to: 
www.nvidia.co.uk/dlilabs

2. Google search for        
nvidia dli

3. Scroll down 
Training Online ELECTIVES

Use NV Developer login or new 
account.

Image Classification with 
Digits

http://www.nvidia.co.uk/dlilabs
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NVIDIA DEEP LEARNING INSTITUTE (DLI)
Hands-on training for developers, data scientists, and researchers

Online self-paced labs across beginner and intermediate levels available at 

www.nvidia.com/dlilabs

Onsite workshops covering e.g. Deep Learning Fundamentals can be requested through our 

page www.nvidia.com/requestDLI

http://www.nvidia.co.uk/dlilabs
http://www.nvidia.com/requestDLI


Gunter Roeth (gunterr@nvidia.com)


